

XE1610-OEMPVT

OEM GPS Receiver

Reference Design 2.0

GENERAL DESCRIPTION

The XE1610-OEMPVT GPS Receiver from RF Solutions is a GPS receiver product which features the revolutionary FirstGPS[™] architecture. This complete GPS receiver solution provides high accuracy position and speed performance as well as high sensitivity and tracking capabilities in urban areas. The GPS Receiver comes in a small form factor package. The XE1610-OEMPVT delivers major advancements in GPS performance, accuracy, integration, computing power and flexibility. It is designed to simplify the embedded system integration process.

The FirstGPS is a mixed hardware/software architecture based on the XE16BB10 advanced channel correlator IC and its companion RF down-converter.

APPLICATIONS

- Automotive
- Asset management/tracking
- Palmtop, Laptop, PDA
- Location Based Services enabled devices
- Handheld receivers

KEY FEATURES

- High sensitivity: to -143 dBm tracking, superior urban performance.
- Position accuracy: < 5m CEP (50%) without SA (horizontal)
- Warm Start is under 40 seconds (50%)
- Hot Start is under 12 seconds (50%)
- Ultra low power: < 20 mA @ 3.3V full power, 3 additional low power modes
- Embedded ARM7TDMI
- Small form factor and low cost solution
- Ready-to-plug solution, fully autonomous PVT solution. Easily integrated into existing systems
- On-board RAM for GPS navigation data, on-board Flash memory back-up
- PPS output
- Bidirectional NMEA interface
- Real Time Clock with separate back-up power supply

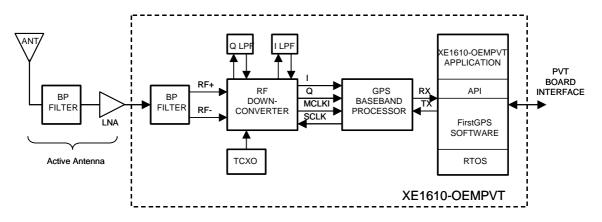
REFERENCE

XE1610-OEMPVT 2.0

FIRSTGPS ARCHITECTURE HIGHLIGHTS

INDUSTRY LEADING GPS PERFORMANCE

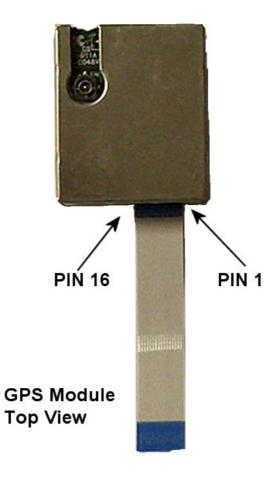
- Builds on high performance FirstGPS core
- Satellite signal tracking engine to perform GPS acquisition and tracking functions without CPU intervention
- High sensitivity: to -143 dBm tracking, superior urban performance
- Position accuracy: < 5m CEP (50%) without SA (horizontal)
- Warm Start is under 40 seconds (50%)
- Hot Start is under 12 seconds (50%)
- Timing output accuracy: +/- 400 ns


LOW POWER

- Ultra low power integrated circuit design, optimized RF and DSP architectures, < 17mA @ 3.3V tracking/doing fixes
- Further power saving thanks to 3 different power down modes
 - Power Save RF section and GPS engine turned Off
 - Stand-by RF section, GPS engine, and MCU clock turned Off, main power supply On, RTC running
 - Power down RF section, GPS engine, and MCU clock turned Off, main power supply Off, RTC running on the back-up supply

XE1610-OEMPVT GPS RECEIVER REFERENCE DESIGN HIGHLIGHTS

- Embedded AT91 MCU, ARM7TDMI-based
- Small form factor
- Low cost
- Ready-to-plug solution, fully autonomous PVT solution. Easily integrated into existing systems
- High signal acquisition & tracking performances
- On-board RAM for GPS navigation data. On-board Flash memory is used to back-up data such as the Almanac
- PPS output
- On-board RTC can be supplied by a separate back-up power supply if the main supply is turned off.
- Application software can be customized for high volume applications (Flash memory)


FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTION

PIN	NAME		DESCRIPTION
1	GND		Power and Signal Ground
2	ON/OFF	I	ON / Off command line
3	VCC		3.0 to 3.6 Volts DC Input Power Supply
4	USPED	1	UART Speed
5	RXA	1	Serial Receive Data, Port A, GPS NMEA Data
6	VRTCBK		Back-up supply for the RTC
7	ТХА	0	Serial Transmit Data, Port A, GPS NMEA Data
8	PPS	0	One Pulse Per Second timing output
9	GND		Power and Signal Ground
10	RESETN	I	Manual Reset, Active low
11	ALMRDY	0	Almanac full and up to date, output
12	STY1	1	for customer specific version
13			N.C.
14	STY0	1	for customer specific version
15			N.C.
16	STANDBYN	1	Stand-by (Active Low)

Page 3 Par CE

TECHNICAL CHARACTERISTICS

SPECIFICATIONS

	Min.	Тур.	Max.
Receiver		L1, C/A code	
Correlators/Channels		32/8	
Update Rate	1/minute	1/second	1/second
Satellite Reacquisition Time			1 second
HotStart			12 seconds (50%)
Warm Start			40 seconds (50%)
Cold Start			120 seconds (50%)
Tracking Sensitivity		-173 dBW	
Power Consumption (VCC) @ 3.3 V			
 Active mode, searching & tracking 		17 mA	20 mA
Power save mode		2.2 mA	2.5 mA
Stand-by mode		400 uA	500 uA
Power down mode		18 uA	20 uA
Voltage Supply VCC	3 V	3.3 V	3.65 V
Back Up Voltage Supply VRTCBK	1.9 V		3.65 V
Output Protocol		NMEA 0183, v3.0	
Position Accuracy			
Horizontal, SA off			5 meters CEP (50%)
DGPS corrected			1 meter
Timing output accuracy	- 400 nanosecond		400 nanosecond

PHYSICAL CHARACTERISTICS

The XE1610-OEMPVT module is 25 x 30 x 9.5 mm (approx. 1.0" x 1.2" x 0.38"). The operating temperature range is between -40C and +85C

PROPOSED MECHANICAL INTERFACE

RF Interface Connector

Subminiature HFL. Works with 3.0V active antenna

Data Interface Connector

16 contact board-to-board flat cable connector

The 16 Way PCB mounting flat Flex Socket is available from RF Solutions under part number CON52746.

INTERFACE DEFINITION, PRINCIPLES OF OPERATION

DATA INTERFACE

VCC – This the main power supply

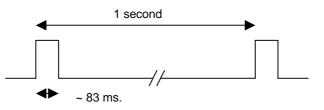
<u>GND</u> – This the power and signal ground

VRTCBK – This is the back-up supply for the on-board hardware Real Time Clock

All I/Os on the Data Interface are related to VCC and GND levels.

<u>ON/OFF</u> - The ON/OFF input pin control whether the GPS engine is turned ON or OFF. If this pin is "high" whenever a reset condition occurs or if it is turned "high" when in operation, then the GPS engine is turned on. If this pin is "low" whenever a reset condition occurs then the GPS engine is not started. If this pin is turned "low" when in operation then the GPS engine is turned off. When ON/OFF is "low", the on/off state can be superseded with the PXEMaRT manufacturer specific NMEA command on RXA, as defined hereafter. This input pin has a pull-up resistor.

<u>RXA</u> – Serial Receive data. This input pin has a pull-up resistor.


TXA – Serial Transmit data

<u>USPED</u> – Hardware Baud rate selection

The Serial NMEA data port (lines RXA and TXA) is an asynchronous serial port (UART). Upon reset, if the USPED input pin is "low" the setting for this port is defined by the set A of UART parameters #1 to 4 in the Default Parameters Table *, or if USPED is "high" the setting is defined by the set B. This setting can be modified with the PXEMaPT manufacturer specific NMEA command defined hereafter. This input pin has a pull-up resistor. There is no flow control on the UART. (*) see the Default Settings section below

<u>PPS</u> - The PPS output pin is Pulse Per Second highly accurate timing signal generated by the on-board GPS baseband processor. The PPS signal is available only when the receiver does position fixes. Otherwise its output level is "low". After a reset condition, the setting for this port is defined in the Default Parameters Table *, parameter #12. This setting can be modified with the PXEMaPS manufacturer specific NMEA command defined hereafter.

(*) see the Default Settings section below

<u>RESETN</u> – Manual Reset input pin. The receiver has 2 reset conditions: first, on power-on, thanks to an on-board Power On Reset circuitry; and second an external reset when the RESETN pin is "low". This input pin has a pull-up resistor.

<u>ALMRDY</u> – When in Active mode, this output indicates the on-board Almanac status. Upon start up and whenever the Almanac data is tested invalid or not up-to-date the output level is "low. If test is valid and up-to-date the output level is "high".

<u>STANDBYN</u> – This input sets the receiver in Stand-by mode when its level is "low". Otherwise the receiver is either in Active or Power Save modes. See below, under Operating modes for details. This input pin has a pull-up resistor.

OPERATING MODES

The receiver has 4 main operating modes, as summarized in the table below

Mode	Description	VCC pin	ON/Off pin	STANDBY N pin	Current cons. max
Active Mode	Receiver is running, doing acquisition, tracking, position fixes	Powered	High	High	20 mA
Power Save Mode	GPS receiver functions are turned OFF, MCU in idle mode, MCU clock is running, RTC is running	Powered	Low (or thru NMEA command)	High	3 mA
Stand-by Mode	GPS receiver functions are turned OFF, MCU clock is stopped, RTC is running	Powered	Low (or thru NMEA command)	Low	<500 uA
Power Down Mode	GPS receiver functions are turned OFF, MCU clock is stopped, RTC is running on the Back-up supply	No power	Low	Low	<20 uA

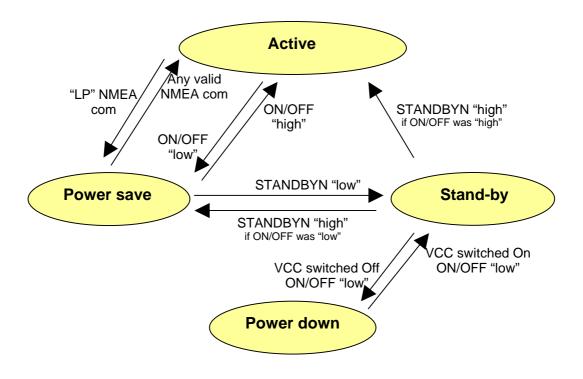


Figure 1 Switching between operating modes

Notes on TTFF / start-up condition:

- When switching from Power Save or Stand-by to Active mode, the start up condition will be
 - Hot start if Almanac is valid, Ephemeris is valid (less than 4 hours old), approximate position is known and RTC is valid
 - Warm start if Almanac is valid, Ephemeris is not valid, approximate position is known and RTC is valid
 Cold start otherwise
- When switching from Power Down to Stand-by then to Active mode, the start up condition will be
 - o Warm start if the Almanac and approximate position saved in Flash are valid, and RTC is valid
 - Cold start otherwise

NMEA STANDARD MESSAGE SET SPECIFICATION

The XE1610-OEMPVT supports NMEA-0183. Brief descriptions of the output messages are provided below.

NMEA Standard Commands

RF Solutions receivers use the standard output messages listed in Table 1:

NMEA	Message Description
GGA	Global positioning system fixed data
GLL	Geographic position – latitude/longitude
GSA	GNSS DOP and active satellites
GSV	GNSS satellites in view
RMC	Recommended minimum specific GNSS data
VTG	Course over ground and ground speed
ZDA	Time & Date
	Table 1. NMEA-0183 Messages

After a reset condition occurs, as defined above, the default setting for NMEA commands is GGA, GSA, GSV and RMC, with update every second. This setting can be modified with the PXEMaNM manufacturer specific command defined hereafter.

GGA — Global Positioning System Fixed Data

Description: This message reports the global positioning system fixed data, as shown in Table 2.

Name Message ID UTC Position Latitude N/S Indicator Longitude E/W Indicator Position Fix Indicator Satellites Used	Example \$GPGGA 161229.487 3723.2475 N 12158.3416 W 1 07	Units	Description GGA protocol header hhmmss.sss ddmm.mmmm N = north or S = south dddmm.mmmm E = east or W = west See xxx0 Range 0 to 12
HDOP MSL Altitude ¹	1.0 9.0	Meters	Horizontal Dilution of Precision
Units	M	Meters	
Geoid Separation ¹		Meters	
Units	Μ	Meters	
Age of Diff. Corr.		Second	Null fields when DGPS is not used
Diff. Ref. Station ID	0000		
Checksum	*18		
<cr><lf></lf></cr>			End of message termination
¹ does not support deoid corr	ections. Values are	WGS-84 ellir	

¹does not support geoid corrections. Values are WGS-84 ellipsoid heights.

Table 2. GGA Data Format

Value 0	Description Fix not available or invalid
1	GPS SPS Mode, fix valid
2	Differential GPS, SPS Mode, fix valid
3	GPS PPS Mode, fix valid

Table 3. Position Fix Indicator

Example: The values reported in this example are interpreted as shown in Table 2: GPGGA, 161229.487, 3723.2475, N, 12158.3416, W, 1, 07, 1.0,9.0,M, M, 0000*18

GLL—Geographic Position - Latitude/Longitude

Description: This message reports latitude and longitude geographic positioning data, as described in Table 4.

Name Message ID Latitude N/S Indicator Longitude E/W Indicator UTC Position Status Checksum <cr><le></le></cr>	Example \$GPGLL 3723.2475 N 12158.3416 W 161229.487 A *2C	Description GLL protocol header dd mm.mmm N = north or S = south ddd mm.mmm E = east or W = west hh mm ss.sss A = data valid or V = data not valid End of message termination
<cr><lf></lf></cr>		End of message termination

Table 4. GLL Data Format

Example: The values reported in this example are interpreted as shown in Table 4: \$GPGLL, 3723.2475, N, 12158.3416, W, 161229.487, A*2C

GSA—GNSS DOP and Active Satellites

Description: This message reports the satellites used in the navigation solution reported by the GGA message. GSA is described in Table 5.

Name Message ID Mode 1 Mode 2 Satellite Used ¹ Satellite Used ¹	Example \$GPGSA A 3 07 02	Description GSA protocol header See Table 6 See Table 7 SV on Channel 1 SV on Channel 2
 Satellite Used ¹ PDOP HDOP VDOP Checksum	1.8 1.0 1.5 *33	 SV on Channel N Position Dilution of Precision Horizontal Dilution of Precision Vertical Dilution of Precision
<cr><lf> ¹ Satellite used in solution.</lf></cr>	33	End of message termination

Table 5. GSA Data Format

Value	Description
М	Manual – forced to operate in 2D or 3D mode
A	Automatic – allowed to automatically switch 2D/3D

Table 6. Mode 1

Value	Description		
1	Fix not available		
2	2D		
3	3D		

Table 7. Mode 2

Example: The values reported in this example are interpreted as shown in Table 5: GPGSA, A, 3, 07, 02, 26, 27, 09, 04, 15, , , , , , , , 1.8, 1.0, 1.5*33

GSV—GNSS Satellites in View

Description: This message reports the satellites in view, their ID numbers, elevation, azimuth, and SNR values (up to four satellites per message). GSV is described in Table 8.

Name	Example	Units	Description
Message ID	\$GPGSV	Units	GSV protocol header
Number of Messages ¹	2		Range 1 to 3
	4		0
Message Number ¹			Range 1 to 3
Satellites in View	07		
Satellite ID	07		Channel 1 (Range 1 to 32)
Elevation	79	degrees	Channel 1 (Maximum 90)
Azimuth	048	degrees	Channel 1 (True, Range 0 to 359)
SNR (C/No)	42	dBHz	Range 0 to 99, null when not tracking
 Satellite ID	27		 Channel 4 (Range 1 to 32)
Elevation	27	degrees	Channel 4 (Maximum 90)
Azimuth	138	degrees	Channel 4 (True, Range 0 to 359)
SNR (C/No)	42	dBHz	Range 0 to 99, null when not tracking
Checksum	*71		
<cr><lf></lf></cr>			End of message termination
1 Demonstration and the number	ar of actallitan tr	المنادان ممرام مرام م	$\sim massacces of CCV/data may be required.$

Depending on the number of satellites tracked multiple messages of GSV data may be required.

Table 8. GGA Data Format

Example: The values reported in this example are interpreted as shown in Table 8. Two messages are require to complete the data transmission.

\$GPGSV,2,1,07,07,79,048,42,02,51,062,43,26,36,256, 42,27,27,138,42*71 \$GPGSV,2,2,07,09,23,313,42,04,19,159,41,15,12,041, 42*41

RMC—Recommended Minimum Specific GNSS Data

Description: This message reports the time, date, position, course, and speed from the receiver's navigation solution. RMC is described in Table 9.

Name Message ID UTC Position Status Latitude N/S Indicator Longitude E/W Indicator Speed Over Ground Course Over Ground Date Magnetic Variation ¹ Chocksum	Example \$GPRMC 161229.487 A 3723.2475 N 12158.3416 W 0.13 309.62 120598	Units knots degrees degrees	DescriptionRMC protocol headerHh mm ss.sssA = data valid or V = data not validDd mm.mmmN = north or S = southDdd mm.mmmmE = east or W = westTrueDd mm yyE = east or W = west
Checksum <cr><lf></lf></cr>	*10		End of message termination
			LIN OF HESSAYE RETHINATION

¹ All "course over ground" data are geodetic WGS84 directions.

Table 9. RMC Data Format

Example: The values reported in this example are interpreted as shown in Table 9: \$GPRMC, 161229.487, A, 3723.2475, N, 12158.3416, W, 0.13, 309.62, 120598, ,*10

VTG—Course Over Ground and Ground Speed

Description: This message reports current ground course and speed data. Course is reported relative to true north only. The VTG message is defined in Table 10.

Name	Example	Units	Description
Message ID	\$GPVTG		VTG protocol header
Course	309.62	degrees	Measured heading
Reference	Т	-	True
Course		degrees	Measured heading
Reference	Μ	-	Magnetic ¹
Speed	0.13	knots	Measured horizontal speed
Units	Ν		Knots
Speed	0.2	km/hr	Measured horizontal speed
Units	K		Kilometer per hour
Checksum	*6E		-
<cr><lf></lf></cr>			End of message termination
¹ All "course over ground"	data are geodeti	c WGS84.	-

Table 10. VTG Data Format

Example: The values reported in this example are interpreted as shown in Table 10: $\$ GPVTG, 309.62, T, , M, 0.13, N, 0.2, K*6E

ZDA—Time & Date

Description: This message reports current time and date. The ZDA message is defined in Table 11.

Name Message ID Hour, Min, Sec, Sub Sec Day Month Year Local Zone Hours Local Zone Minutes <cr><lf></lf></cr>	Example \$GPZDA 114523.62 12 04 2001 10 34	Units	Description ZDA protocol header hhmmss.ss day in UTC, 01 to 31 month in UTC, 01 to 12 year in UTC local zone hours, +/- 13 hours local zone minutes, 0 to +59 End of message termination
---	--	-------	--

Table 11 ZDA Data Format

Example: The values reported in this example are interpreted as shown in Table 10: \$GPZDA, 114523.62, 12, 04, 2001, 10, 34*6E

NMEA SPECIFIC COMMANDS

The NMEA 0183 Standard dictates that proprietary NMEA commands have the following structure:

\$Paaaxxxxxxxxxxx*hh

where aaa - mnemonic code, XEM in our case; xxxxxxxx...- data; hh - command checksum

Two types of input commands are defined: *query* and *set*. *Query* commands request certain information from the receiver. Set commands allow the user to configure the receiver with certain configuration parameters or force the receiver to perform a specific action. For each type of input command, a corresponding output *response* command is defined.

For a *query* command, the *response* command contains requested data. For a *set* command, the *response* command contains the status of the action requested in the *set* command. Taking these aspects into account, the following is the general structure of the specific NMEA command:

\$PXEMmaa,x1,x2,x3,x4,....,xN*hh

where m – command type: 'Q' for 'query', 'S' for 'set', 'R' for 'response'; aa – proprietary command identifier (see below); x1...xN – data parameters (only for set and query response commands); hh – command checksum NOTE: Each of the data parameters must be preceded with a comma, except for the aa command identifier, and the checksum which is preceded with a checksum delimiter character '*'.

- QUERY command: to send a *query* command, no data fields are transmitted. The following format is used: \$PXEMQaa*hh
- RESPONSE command to QUERY: for a *query* command, a *response* command with all fields is transmitted. The following format is used: \$PXEMRaa,x1,x2,x3,x4,...,xN*hh
- SET command: to send a *set* command, x1...xN must contain valid values. The following format is used: \$PXEMSaa,x1,x2,x3,x4,....,xN*hh
- RESPONSE command to SET: for a set command, a status response command is transmitted. The following format is used: \$PXEMRaa,s*hh

where s is the status of the requested action: 'A' if the action was successful; 'V' otherwise.

The following proprietary NMEA command identifiers are implemented:

DI – Diagnostic Message

This command outputs a diagnostic string. It is used to report various error conditions. This is a response-only command.

\$PXEMRDI,ccccccc*hh where ccccccc is a diagnostic string up to 50 characters

NM – Command Mask and Automatic Output Rate

This command configures the application to automatically output standard NMEA commands at a specified time interval.

\$PXEMaNM,xxxx,xx*hh

Name Message ID	Example \$PXEMaNM	Units	Description Proprietary NM protocol header, a-mode (S = set; R = response)
Mask	0008		xxxx Output command mask, hex value (see Notes below)
Rate <cr><lf></lf></cr>	01	Sec	xx Automatic output command rate (00 to 99) End of message termination

Table 12 NM Data Format

Notes: xxxx is a hexadecimal value representing a 2-byte bit-mask where a specific bit sets or clears automatic output of a particular NMEA command according to the table below. The mask is derived by combining all bits which represent the NMEA commands which will be automatically output. For example, to automatically output GGA, GSA, ZDA, and RMC, the bits 0, 4, 5, and 8 are set to 1 in a 2-byte mask, resulting in a hex value 0x131 (0x1+0x10+0x20+0x100). This value is sent as an ASCII string '0131' in the xxxx field of the NM command.

NME	A	XXXX
Command	Bit#	Field value
GGA	0	0001
GLL	1	0002
VTG	2	0004

OEM GPS Receiver Module

GSA	4	0010
GSV	3	0008
ZDA	5	0020
RMC	8	0100

Table 13 Possible MASK field values for the NM command

Example: \$PXEMSNM,0008,01*6E (set)
\$PXEMRNM,a*6E (response to set: a - action status: A = success; V = failure)

PS – Pulse-Per-Second Configuration

This command sets the pulse-per-second (PPS) output on or off. This is a set-only command.

\$PXEMaPS,x*hh

Name Message ID On/Off <cr><lf></lf></cr>	Example \$PXEMaPS 1	Units	Description Proprietary PS protocol header, a-mode (S = set; R = response0 PPS output switch (1 = ON; 0 = OFF) End of message termination
	Table	14 PS Data	Format

Example:

\$PXEMSPS,1*6E	(set)
\$PXEMRPS,a*6E	(response to set: a - action status: A = success; V = failure)

PT – Port Configuration

This command configures the application serial port communication parameters.

\$PXEMaPT,xxxxx,x,a,x*hh

Name Message ID	Example Units \$PXEMaPT	Description Proprietary PT protocol header, a-mode (S = set; R = response)
Baud rate	009600	xxxxxx Baud rate (057600, 038400, 019200, 009600, 004800, 002400)
Data length	8	x # of data bits (7 or 8)
Parity	Ν	Parity (N = None; O = Odd; E = Even)
Stop bit <cr><lf></lf></cr>	1	# of stop bits (1 or 2) End of message termination

Table 15 PT Data Format

Example:

\$PXEMSPT,009600,8,N,1*6E (set)
\$PXEMRPT,a*6E (response to set: a - action status: A = success; V = failure)

RT – Reset the Receiver / Start-Stop FirstGPS

This command forces the receiver to perform a software reset. It also allows the user to start up and shut down the FirstGPS library without performing a full software reset. This is a set-only command.

\$PXEMaRT,a*hh

Name Message ID	Example \$PXEMaRT	Units	Description Proprietary RT protocol header, a-mode (S = set; R = response)
Command	S		C = cold software reset W = warm software reset H = hot software reset

CE

Page 12

<CR><LF>

S = start the FirstGPS library X = shut down the FirstGPS library End of message termination

Table 16 RT Data Format

Example:

\$PXEMSRT,W*6E	(set)	
\$PXEMRRT,a*6E	(response to set: a - action status: A = success; V = fail	lure)

VR – Version Information

This command obtains software versions for the measurement platform (MPM) firmware, FirstGPS API, FirstGPS Library, native RTOS, and native processor (CPU). This is a query-only command.

Note: A complete VR command returns only the version of a particular product component one at a time (either MPM firmware, API, library, RTOS or CPU). The command must include the component type to obtain the version for any given query.

\$PXEMaVR,a,cccccc,xx,xx,xx,xx,xx,xxx*hh

Name Message ID	Example \$PXEMaVR	Units	Description Proprietary RT protocol header, a-mode (Q = query; R = response)
Component type	A		M = measurement platform (MPM) firmware A = FirstGPS API N = FirstGPS Library R = native RTOS U = native processor (CPU) V = Software build
Name	abcdef		variable length field; may be up to 17 characters long
Maj version	04		Major version number (00 to 99)
Min version	02		Minor version number (00 to 99)
Beta version	03		Beta version number (00 to 99)
Month	10		Month of the release (01 to 12)
Day	27		Day of the release (01 to 31)
Year	2002		Year of the release
<cr><lf></lf></cr>			End of message termination

Table 17 VR Data Format

Example:

\$PXEMQVR,R*6E (query)

\$PXEMRVR,R,nucleus,04,03,03,10,27,2000*6E (response to query)

GS – Geodetic System Configuration

This command sets the geodetic system used to compute the geographic positioning data.

\$PXEMaGS,ee,xxxx.xxxxx,yyyy.yyyyyy,zzzz.zzzz*hh

Name Message ID	Example \$PXEMaGS	Units	Description Proprietary GS protocol header, a-mode (S = set; R = response)
Ellipsoid	12		ee Ellipsoid Model (see table below)
Delta X	-0.148	m	xxxx.xxxxxx, shift parameter on x axis
Delta Y	0.096	m	yyyy.yyyyyy, shift parameter on y axis
Delta Z <cr><lf></lf></cr>	0.122	m	zzzz.zzzzz, shift parameter on z axis End of message termination

Table 18 GS Data Format

Index	Ellipsoid Name	Semi-Major Axis	Flattening
00	Airy 1830	6377563.396	299.3249646
01	Australian National & South American 1969	6378160	298.25
02	Bessel 1841 Ethiopia	6377397.155	299.1528128
03	Bessel 1841 Namibia	6377483.865	299.1528128
04	Clarke 1866	6378206.4	294.9786982
05	Clarke 1880	6378249.145	293.465
06	Everest Brunei and E. Malaysia	6377298.556	300.8017
07	Everest India 1830	6377276.345	300.8017

OEM GPS Receiver Module

08	Everest India 1956	6377301.243	300.8017
09	Everest Pakistan	6377309.613	300.8017
10	Everest W. Malaysia and Singapore 1948	6377304.063	300.8017
11	Geodetic Reference System 1980	6378137	298.257222101
12	Helmert 1906	6378200	298.3
13	Hough 1960	6378270	297
14	Indonesian 1974	6378160	298.247
15	International 1924 & Hayford	6378388	297
16	Krassovsky 1940	6378245	298.3
17	Modified Airy	6377340.189	299.3249646
18	Modified Fischer 1960	6378155	298.3
19	WGS 1972	6378135	298.26
20	WGS 1984	6378137	298.257223563

Table 19 Ellipsoid models

Example:

\$PXEMSGS,12,-0.148,0.096,0.122*44 (set)
\$PXEMRGS,a,12,-0.148,0.096,0.122*08 (response to set: a - action status: A = success; V
= failure)
see also Exhibit A for further examples

LP – Power Save Mode

This command sets the receiver in Power Save mode. To go back to the Active mode, users should send any valid NMEA command to the receiver. Do not toggle the ON/OFF pin to go to the Active Mode if a NMEA LP command is used to switch to the Power Save mode

\$PXEMaLP*hh

Name Message ID <cr><lf></lf></cr>	Example \$PXEMaLP	Units	Description Proprietary LP protocol header, a-mode (S = set; R = response) End of message termination
	Table 2	0 LP Data i	format
P*4F (set)			

\$PXEMSLP*4 \$PXEMRLP,a

Example:

\$PXEMRLP,a*23 (response to set: a - action status: A = success; V = failure)

TR – Transparent Mode

With this type of command an API function call as defined in the Standard and Advanced API Function Calls documents are passed through the NMEA interface. This can be a query, set, and response type of command.

\$PXEMaTR,c..c,x..xx, .., x..x*hh

Example: \$PXEMQTR,SQCS*6E \$PXEMRTR,SQCS,NAV_OK,GPS Time of Week,Channel status for satellite 1, ... Channel status for satellite n*4F (response to the channel status query)

See Exhibit B for detailed information on the API function calls

GPS DATA BACK-UP

The almanac data is the information transmitted by each satellite on the orbits and state (health) of the entire constellation. The ephemeris is a list of accurate positions or locations of celestial objects as a function of time. So, the availability of almanac and ephemeris data, in addition to time and approximate position, allows the GPS receiver to rapidly acquire satellites as soon as it is turned on. There are 3 possible start conditions when the receiver is turned on: a) the Cold Start, that is the start-up sequence of the receiver when no initialization data is available; b) the Warm Start, that is the start-up sequence of the receiver when the time and the almanac information are available; and c) the Hot Start, that is the start-up sequence of the receiver when the ephemeris, the last position, the time and the almanac information are available.

In the XE1610-OEMPVT design the GPS data structure, including almanac, ephemeris and last position fix, is copied into the on-board Flash memory. The data is stored the first time the almanac is complete and up-to-date, then every D days, where D is defined in the Default Parameters Table *, parameter #13. Alternatively, the Flash can be programmed with valid information during the manufacturing process. This is to avoid downloading it from satellites, which takes approx. 12.5 minutes. Then, as long as the main power supply remains turned On, the GPS data structure is kept in RAM. However, data in RAM is not maintained if the main supply is switched Off (or in case of a power failure). In this case, upon power up, this data is uploaded from the Flash back-up memory into the GPS data RAM. Provided this data is valid – 6 months for the Almanac, 4 hours for ephemeris – the TTFF will be shorter than Cold Start TTFF, since the receiver will be in a Warm or Hot start condition. (*) see the Default Settings section below

Note: with the current Flash technology embedded in this design it takes approx. 20 seconds to erase and update the Flash sectors where the GPS data structure is stored.

REAL TIME CLOCK

The receiver board has a hardware Real Time Clock chip that operates independently from the MCU and the GPS function. When the GPS receiver is active and as soon as the GPS time becomes available the RTC is synchronized with GPS time. Then, as long as GPS time is available, the RTC is synchronized every 60 minutes.

If the main power supply VCC is turned OFF and provided the VRTCBK supply is available, the RTC operates and keeps the RTC information up to date. By doing so, when both the main VCC supply and the GPS receiver are turned ON again the time information will be immediately available.

Page 16

DEFAULT SETTINGS

A number of system settings are stored in one particular area of the embedded Flash. This is the Default Parameters Table, whose content is listed below. Some of these settings can be modified by sending a proprietary NMEA command to the receiver, as defined previously.

#	Default parameter	Data Type	Default value	Range values
1	Serial Port Baudrate (A / B)	Integer	4800 / 9600	2400 / 4800 / 9600 / 19200 / 38400 / 57600
2	Serial Port Data bits (A / B)	Integer	8/8	7 / 8
3	Serial Port Parity bits (A / B)	Character	None / None	None / Odd / Even
4	Serial Port Stop bits (A / B)	Integer	1 / 1	1 / 2
5	NMEA output displayed	NMEA Syntax	GGA / GSA / GSV / RMC	GGA / GLL / GSA / GSV / RMC / VTG / ZDA
6	NMEA display order	Integer	ZDA / GGA / GLL / VTG / GSA / GSV / RMC	Any valid combination (not implemented yet)
7	NMEA refresh rate	Integer	1 second	1 to 99 seconds
8	Geodetic System Ellipsoid	Integer	20	00 to 20
9	Geodetic System Delta X	Real	0	-9999.99999 to +9999.99999
10	Geodetic System Delta Y	Real	0	-9999.99999 to +9999.99999
11	Geodetic System Delta Z	Real	0	-9999.99999 to +9999.99999
12	PPS output	Boolean	Enabled	Disabled
13	BBRAM Update rate	Integer	6 days	1 to 31days
14	Receiver Mode	Integer	Auto 2D/3D	2D only / 3D only / Auto 2D/3D (not implemented yet)
15	Dynamic Code	Integer	Automobile	Land / Sea / Air / Stationary / Automobile
16	Max Oscillator Offset	Real	7.9e-6	Depends on the Oscillator
17	Elevation Mask	Integer	5 degrees	0 to 10 degrees
18		Integer	2	2 to 6
19	DOP Mask	Integer	12	6 to 20
20	PDOP Switch	Integer	6	6 to 8
21	Last Position (Latitude)	Real	TBD by Customer	-PI/2 to PI/2 (not implemented yet)
22	Last Position (Longitude)	Real	TBD by Customer	-PI to PI (not implemented yet)
23	Last Position (Altitude)	Real	TBD by Customer	(not implemented yet)
24	Last Position (Accuracy)	Real	TBD by Customer	(not implemented yet)

GPS ENGINE CONFIGURATION

In addition, there are some settings for the embedded FirstGPS navigation software that cannot be modified by the users

Receiver configuration

DGPS Mode	DGPS Off	
-----------	----------	--

Filter configuration

Kalman Filter

Offset configuration

Offset	0 ppm	
Window	-1 ppm	

Application settings

Number of channels	8	
Week epoch	1024	the offset number of 1024 week periods since 6 January 1980. Setting to 1024 includes all dates between August 22, 1999 and March 2019.

APPLICATION INFORMATION

ACTIVE ANTENNA

For proper operation, the XE1610-OEMPVT receiver should be operated with an active GPS antenna that has the following characteristics

Power supply voltage	2.7 - 3.6 V
Frequency range	1,575.42+/-1.023MHz
LNA Gain	27 dB at 3.0 V
LNA NF	1.1 dB at 3.0 V
Antenna and LNA total Gain	25 dBi Max at 3.0 V

TABLE A

The following table illustrates datums for some cities around the world.

Country	City	NNEA Syntax	WGS-84 Datum	Local Datum
			51° 23' N	51° 22' 58.454" N
Wales	Cardiff	\$PXEMSGS,00,375,-111,431*78	3° 20' W	3° 19' 55.396" W
			100.0 m	51.497 m
			33° 52' S	33° 52' 5.738" S
Australia	Sydney	\$PXEMSGS,01,-134,-48,149*40	151° 12' E	151° 11' 55.851" E
			100.0 m	81.918 m
			35° 41' N	35° 40' 48.239" N
Japan	Tokyo	\$PXEMSGS,02,-148,507,685*5C	139° 46' E	139° 46' 11.591" E
			100.0 m	59.959 m
			22° 34' S	22° 33' 58.644" S
Namibia	Windhoek	\$PXEMSGS,03,616,-97,251*60	17° 5' E	17° 5' 3.088" E
			100.0 m	77.040 m
Quites	1.1		23° 08' N	23° 7' 58.302" N
Cuba	Havana	\$PXEMSGS,04,-3,142,183*50	82° 21' W	82° 21' 0.559" W
			100.0 m 14° 42' N	125.109 m 14° 41' 57.554" N
Sanagal	Deker	\$PXEMSGS,05,-128,-18,224*44	17° 29' W	14° 41° 57.554° N 17° 28' 58.140" W
Senegal	Dakar	\$PXEWISGS,05,-120,-10,224 44	100.0 m	66.314 m
			4° 56' N	4° 56' 3.033" N
Brunei	Bandar S. B.	\$PXEMSGS,06,-679,669,-48*4C	114° 50' E	4 56 3.033 N 114° 49' 49.116" E
Diuliei	Dariual S. D.	\$FXEW3G3,00,-079,009,-40 4C	100.0 m	52.227 m
			13° 44' N	13° 43' 54.002" N
Thailand	Bangkok	\$PXEMSGS,07,210,814,289*7D	100° 30' E	100° 30' 11.811" E
Thallanu	Daligkok	\$PXEINISGS,07,210,814,289"7D	100.0 m	141.421 m
			22° 32' N	22° 31' 57.337" N
India	Calcutta	\$PXEMSGS,08,295,736,257*73	88° 20' E	88° 20' 9.571" E
india	Calculta	\$1 XEM666,00,200,700,207 70	100.0 m	122.930 m
			24° 48' N	24° 47' 58.714" N
Pakistan	Karachi	\$PXEMSGS,09,283,682,231*7B	66° 59' E	66° 58' 59.779" E
ranotari	Raraoni		100.0 m	128.006 m
			1° 18' N	1° 18' 0.179" N
Singapore	Singapore	\$PXEMSGS,10,-11,851,5*62	103° 50' E	103° 50' 6.237" E
	5	······································	100.0 m	103.999 m
			55° 46' N	55° 46' 0.010" N
Russia	Moscow	\$PXEMSGS,11,1.08,0.27,0.9*6C	37° 40' E	37° 39' 59.865" E
			100.0 m	99.446 m
			29° 52' N	29° 51' 59.415" N
Egypt	Cairo	\$PXEMSGS,12,-130,110,-13*44	31° 20' E	31° 19' 53.980" E
			100.0 m	89.458 m
			41° 32' N	41° 32' 6.227" N
Marshall Island	Majuro	\$PXEMSGS,13,102,52,-38*57	12° 18' E	12° 17' 58.745" E
			100.0 m	-50.775 m
			6° 11' S	6° 11' 0.141" S
Indonesia	Djakarta	\$PXEMSGS,14,-24,-15,5*75	106° 50' E	106° 49' 59.111" E
			100.0 m	84.912 m
			48° 49' N	48° 49' 3.271" N
France	Paris	\$PXEMSGS,15,-87,-96,-120*5D	2° 29' E	2° 29' 4.516" E
			100.0 m	50.964 m
Somalia	Mogadiscio	\$PXEMSGS,16,-43,-163,45*72	2° 2' N	2° 1' 58.354" N
	J	- , , -,, -	49° 19' E	49° 19' 2.383" E

OEM GPS Receiver Module

-				
			100.0 m	141.943 m
			53° 22' N	53° 21' 59.163" N
Ireland	Dublin	\$PXEMSGS,17,506,-122,611*58	6° 21' W	6° 20' 56.468" W
			100.0 m	47.599 m
			1° 18' N	1° 18' 0.833" N
Singapore	Singapore	\$PXEMSGS,18,7,-10,26*51	103° 50' E	103° 50' 0.142" E
			100.0 m	93.969 m
			53° 22' N	53° 21' 59.906" N
Ireland	Dublin	\$PXEMSGS,19,0,0,4.5*60	6° 21' W	6° 21' 0.554" W
			100.0 m	96.856 m
			53° 22' N	53° 22' N
Ireland	Dublin	\$PXEMSGS,20,0,0,0*75	6° 21' W	6° 21' W
			100.0 m	100.0 m

Table B

The Standard and Advanced API Function Calls documents as well as the list and description of parameters for the \$PXEMaTR proprietary NMEA command are passed to customers on request and upon approval by RF Solutions.

> For more information or general enquiries, please contact R. F. Solutions Ltd., Unit 21, Cliffe Industrial Estate, South Street. Lewes. E Sussex, BN8 6JL. England Fax +44 (0)1273 480 661

Tel +44 (0)1273 898 000

Email sales @rfsolutions.co.uk

http://www.rfsolutions.co.uk

RF Solutions is a member of the Low Power Radio Association

All Trademarks acknowledged and remain the property of the respected owners

Information contained in this document is believed to be accurate, however no representation or warranty is given and R.F. Solutions Ltd. assumes no liability with respect to the accuracy of such information. Use of R.F. Solutions as critical components in life support systems is not authorised except with express written approval from R.F. Solutions Ltd.

